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ABSTRACT
It is shown that the dual of the problem of minimizing the 2-norm of the
primal and dual optimal variables and slacks of a linear program, can be
transformed into an unconstrained minimization of a convex, parameter-free,
globally differentiable, piecewise quadratic function with a Lipschitz
continuous gradient, If the slacks are not included in the norm minimization,
one obtains a minimization problem with a convex, parameter-free, quadratic

objective function subject to nonnegativity constraints only.

AMS (MOS) Subject Classifications: 90C05, 90C20, 90C25

Key Words: Linear programming, Unconstrained minimization, Quadratic
programming

Work Unit Number 5 (Operations Research)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS“790 1066 .

T -
Iy




SIGNIFICANCE AND EXPLANATION

The linear programming problem is that of maximizing a linear objective
function subject to linear inequalities and equalities. Such problems are
usually solved by methods which move from a vertex to a higher neighboring

vertex in the feasible region and terminate in a finite number of steps. In

this report we show how the smallest solution of a linear program can be
obtained by the completely unconstrained minimization of a valley-like smooth
function. This reformulation should enable us to use other techniques to

solve this fundamental problem.
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LEAST-NORM LINEAR PROGRAMMING SOLUTION AS AN UNCONSTRAINED MINIMIZATION PROBLEM

0. L. Mangasarian

1. Introduction

In general the primal-dual solution to a linear program is not unique and sometimes
the set of such solutions is unbounded in which case the problem is unstable (18]. It
seems reasonable then that given a linear program one would be interested in finding a
unigue solution with some least norm property. In this work we will show that if one
chooses that optimal solution which minimizes the 2-norm of the primal and dual optimal
variables and slacks one is led to an unconstrained minimization of a convex, parameter-
free, globally differentiable, piecewise-quadratic function with a Lipschitz continuous
gradient. If the slacks are not included in the norm minimization, one obtains a minimiza-
tion problem with a convex, parameter~free, quadratic objective function subject to
nonnegativity constraints only. These reformulations of the original linear program can be
solved by techniques other than the simplex method and will lead to a unique least-norm
solution of the problem.

We shall consider the canonical linear program

maximize ch subject to y = -Ax + b, (x,y) 2 0 (@ D]

+m
(x,y) R

where ¢ and b are given vectors in the real dimensional Euclidean spaces R" and R"
respectively, A 1is a given m X n real matrix and the superscript T denotes the
transpose. The dual linear program ([3] associated with (1) is
fos T . T
minimize b u subject to v = A'u - c, (u,v) 2 0 . (2)
mtn

(u,v) R

It is well known [3]) that solving either (1) or (2) is equivalent to solving both (1) and

(2) which in turn is equivalent to the following linear complementarity problem [2]:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7901066.
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Find (z,w) in R such that
weMz+q20, 220, zw=gz=0 (3)
where
T
0 A ~-c X v
k=n+m M= s Q= ¢z = s W= . 4)
-A 0 b u Yy

Note that M is a skew symmetric matrix satisfying M + MT = 0 and hence zTMz = 0 for

any z in rRF. a principal purpose of this work is to show (Theorem 1) that the least 2-

norm solution (;,;) of problem (3) can be obtained by solving the following unconstrained

minimization problem in Rk+1

minimize €£(r,a) (5)

+1

(r,a)eRk

where
T 1 T 2 1 2
f(r,a) := gr + 3 1(Mr uq)+l2 + 2 I(-r)+l2 . (6)

Here I-I2 denotes the 2-norm and for t in Rk, (v), denotes a vector in Rk with

components ((t)+)i = max{ti,O}, i =1,e¢e,k, where ti is the ith ocomponent of t. It

is easy to verify that f(r.a) is a oonvex, globally differentiable function on Rk+1. We

will also show that f has a Lipschitz continuous gradient on Rk+1. In fact, it will be
shown that the unoconstrained minimization problem (5) is equivalent to the dual of the

least-norm problem

1
minimize {z Iz,wlilw =Mz +q>0, z20, qu = 0} . (7)

2
(z,w)eR2k

We will also show the value ;, where (;,;) is a solution of the unconstrained problem
(5), plays an important role in interpreting the stability of least-norm solution of (3)
and hence of (1)-(2) (Corollary 3).

By considering the dual of a slightly different least-norm problem

minimize {% Izlgluz +q20, z30, qu = 0} (8)

k
Z€R

we are led (Theorem 2) to the following convex quadratic minimization problem with
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nonnegativity constraints only

minimize gi{s,t,8) (9)

(s,t,B)eRZk*‘

(s,t,8)20

where

g(s,t,B) := qTa +-l; IMTa - Bgq + :Ii . (10)
Here again the value B of B for which (9) has a solution can be interpreted as a
stability measure for the dual linear programs {1)-(2) (Corollary 5).

We note that since the conditions Mz + q > 0, z20 imply that qu 2 0 it follows
that in both problems (7) and (8) the last constraint qu -0 can be written in the
equivalent form qu < 0. Thus the Lagrange multiplier associated with qu =0 is
implicitly nonnegative.

The formulations (5) and (9) have computational implications. Thus the unconstrained
minimization problem (5) can be solved by gradient and possibly other methods (8] while the

quadratic problem (9) can be solved by, among others, iterative successive overrelaxation

methods {11]. These aspects are discussed in Section 4.
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2. The least-norm linear programming solution as an unconstrained minimization problem

We begin by establishing the following useful preliminary result.

Leema 1. Let S C Rk, let h:s + Rz, let B:Rk + R and let ¢ be a nondecreasing

function from the nonnegative real line into R. Let 1+l be any monotonic norm on R",

that is for a and b in Rl, lal < Ibl whenever Iail < Ibi" i=1,¢04,8. Then

(1ii)

Proof .

(1) x

(;, ; = l’l(;)+ ~ h(x)) solves

min 8(x) + ¢(lh(x) + yl)

solves min 8(x) + p(lh(x) §) == xS
+ ¥>0
X€S =
and the two minima are equal
solves min 8(x) + \a(lh(x)+l) (;,;) solves
xX€S
== min 8(x) + ¢(¥h(x) + yl)
and the two minima are equal :ig’
(;,;= h(;)+ -~ h(x)) solves (;,;) so lves
min 8(x) + ¢(In(x) + yl) == min 0(x) + ¢(Fh(x) + yb) .
X€ES XES
¥20 ¥20
(i) Let x solve: min 8(x) + ¢(Ih(x) 1), let y = h(;)+ - hix), let x €S
XE€ES
and let y > 0. Then
Bx) + ¢(hh(x) + yb) - 8(x) - ¢(fh(x) + yl)
= 8(x) + ¢(Ih(x) + y1) - 8(x) = ¢(Ih(x) 1)  (By definition of y)

2 0(x) + ¢(hh(x) + yl) = 8(x) = ¢(Ah(x) ¥}  (By definition of x)

> 0 {(By norm monotonicity, nondecreasing property of ¢ and

,hi(” + y‘l 2 h,l(x)“ i=1,0e.,8) &

The two minima are equal by the definition of ;.
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(ii) Let (x,y) solve min 6(x) + ¢(lh(x) + yl) and let x € S. Then
xes,yzo

8(x) + w(Th(x) 1) < 8(x) + o(In(x) +y1)
(By norm monotonicity, nondecreasing property of v
and |h (x) +y;[2 h(x),, TR TR 3!
< 8(x) + ¢(Ih(x) +yl) for y 20
(By definition of (;,;))
= B(x) +«p(lh(x)*l) (Set y = h(x)+ = h(x) > 0) .
The two minima are equal because by part (i), x and y = h(;)+ - h(x) solve
min 6(x) + ¢(lh(x) + yl).
Xes
b 244
(iii) This part follows by combining parts (i) and (ii) of the lemma. a

we are ready now to establish our first principal result.

Theorem 1. The dual linear programs (1) and (2) are solvable if and only if the

unconstrained minimization problem (S) is solvable. For any solution (?,3) of (5) the

point (z,w) defined by

x1

=7 = (M1 - aq) ., W 1= (-T), (1)

el

is the unique point in Rzk which solves (3), the dual linear programs (1)-(2) and the

minimum-norm problem (7). Furthermore

1
min f(r,a) = - min {'2- Iz,wl§|w =Mz +q20, 220, qu =0} .(12)

1

(r,a)eR'” {z,w)ER

Proof. If the solution set of (3) is nonempty then by quadratic programming duality (4,10]

we have that




- min {%Iz,wlglw-Mz-q-O,wz 0, z30, qu-O}

(z,w)e Rzk

- 30 -ag+ @2 - 2 aer + ard - g"rl(a,0 3 0} 3

+
(x',a,d,cn)eR3k 1

= = max

_ LI S 2 v, 2 T 4
= min 5 (M ctq)+l2 +3 1{ r)+I2 +qr (5)
k+1
(r,a)€R
(By Lemma 1) 1
- min f(r,a) .
(t,ct)el!k+1 ]

Suppose first that the dual linear programs (1)=-(2) are solvable. Then the solution
set of (3) is nonempty and contains a unique (z,) in R2K that solves (7). By Dorn's i
duality theorem [4,10 Theorem 8.2.4] there exists (r,a,d,a) in R3¥X*1 that solves (13) "
above and by Lemma 1, (;,G—) solves (5) and
= f(r,a) .

1 = =2
-3 lz,wl2

Conversely now suppose that (r,a) solves (5)., Then again by Lemma 1, (r,a) and

d= (M -aq, ~ M'r - %@, 3= (7, - (-T)

solve (13) and by Dorn's strict converse duality theorem [4,10 Theorem 8.2.5)

Z=Mr-aq+ds= (MT;-Eq)+

= =r + a3 = [(=r -
w (=x) )

is the unique point in rRZK  which solves (7) and hence the dual linear programs (1)-(2). i
We again have that 7
; 1
| — - 1 s=2
i f(r,a) = - 3 Iz,wl2 . u] '

Because problem (5) is an unconstrained minimjization problem with a convex

differentiable objective function its solution can be achieved by setting the gradient "

Vf(r,a) equal to zero. We thus have the following.




Corollary 1. The dual linear programs (1) and (2) are solvable if and only if there exist
(;,;) € Rk” satisfying
q + MM -G, - (<), = 0 (14)
VE(r,a) =
~"(M'F -G, =0 . (15)
For any (r,a) satisfying (14)-(15) the point (z,w) defined by (11) is the unique point

in Rzk

which solves (3), the dual linear programs (1)-(2) and the minimum-norm problem
(7).

An interesting property of the unconstrained minimization problem (5) is that the
minimization over the variable o« can be dispensed with if a is chosen sufficiently
large. This can be established by using the perturbation results of linear programming
{13] as follows.

Corollary 2. Let {z|Mz +q2 0, z 2 0} be nonempty and let f be defined by (6). There

exists an ; 2 0 such that

~

min f(r,a) = v(a} for a 3 a (16)
(r,a)eRk+1
where
v(a) := min f(r,a) (17)
rERk

is well defined, ocontinuous and convex for all real a and

¢(0) = - min {% lz,wl§|w=Mz +q30, z;O} ' (18)
(z,w)eR2k
1 2 T ~
ola) = = min (Elz,wl2|w=Mz+q=>0,zgo,qz-o} for a2 a . (19)
2k
(z,w)e€R




Proof.

min  f(r,a) =~ min (T 0zwillw =Mz +q20, 220, qzg0} (20)
(r,u)ERk+1 (z,wJGRzk
(By (12))
: T 1 2
= - min  f{aq z + 7 lzwbylw=Mz+q>0, 2z 0} (21)
2k
(z,w)ER

for a > ; for some a 2 0 (By [13, Theorem 1] and since
min{qulw =Mz +g>0, z>0}=0)
Z,w
=~ max (- gilr-agral - Daecrat?-gTri(a,a) 3 0} (22)
(r,a,d)e R3k

(By quadratic programming duality ([4,10]))

= min f£(r,a) (By Lemma 1) (23)
rGRk
= g(a) . (24)

This establishes (16) and (19). Note that in the above equalities the restriction of a
to a > @ is only needed for the equality between (20) and (21), otherwise for the
equalities between (21) and up to (24) a is unrestricted. Because the quadratic program
(21) is feasible and its dual (22) is also feasible it follows that the objective function
of (21) is bounded below (4,10 Theorem 8.2.3) and hence (21) has a solution for each real
a [5]. By virtue of the equality between (21) and (24) for all real a it follows that

¥{a) is well defined for all real a. That (a) is convex and continuous for all real
a follows from the parametric problem representation (21) of +(a) [9, Theorem 1}.
Finally (18) follows by setting a = 0 1in (21). 0

By using results of perturbation theory of convex programs [6,19] we can give a useful

stability interpretation of E, where (;,;) solves (5).

Corollary 3. Let the linear program (1) be solvable. For & > 0 let (2(J),w(8)) be the

v

unique solution of the following perturbation of the minimum-norm problem (7)

-8




min {% lz,wlglw =Mz +q20, z >0, qu < 8} . (25)
(z,w)ERzk
Then for any a such that (r,a) solves (5)
0 ¢ Hz(D),w(O)ﬂg - nz(s),w(s)n§ < 2a8 (26)

and if q # 0

ad

0 < ﬂz(O),w(O)“2 - HZ(G),W(é)IZ < T:TBTT:TETF;

(27)
Proof. The first inequality of (26) is obvious because the feasible region of (25) for
§ > 0 contains the feasible region for § = 0. The second inequality of (26) follows
from the standard result of perturbation theory for convex programs (6 Theorem 1, 19
Theorem 29.1] that -;, which is the negative of an optimal multiplier of (25) asscciated
with qu ¢ 8 for 8 =0, is a subgradient of the convex function % nz(é),w(é)ﬂg at
§=0.
To establish (27) we note that for § > 0, (z(8),w(8)) 1is also the unique solution of
the convex problem
min {Iz,wlzlw =Mz +q2>0, z30, qu < 8} (28)
(z,w)eRzk
and if q # 0, then ;/ﬂz(o),w(o)ﬂz is an optimal multiplier associated with qu g6
for 8§ = 0 in the optimization problem (28). 0
Inequality (26) states that for an error of no more than ¢ in satisfying the
equality condition between the primal and dual objective functions, that is

0 < -érx + bTu = qu ¢ §, the square of the 2-norm of the smallest optimal vector of

primal and dual variables and slacks of the linear program (1) differs by no more than

2aé from the square of the 2-norm of the corresponding optimal vector for which qu = 0.
It follows that the smaller a  is the more stable is the linear program (1) under errors
in its minimum value. Linear programs with large a would in general be harder to solve
than those with small a. Computational experience in (12} where a perturbation parameter

-

1
€ was used which is related to p bears out this observation. The least value «a such

~9-
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that (r,a) is a solution of (5) may be thought of as a unique stability parameter

associated with the linear program (1), and because of (16), it may be defined as
min{a|¥(a) = ¥(a), O <ayg a}. Because the convex set {aj¥{a) = v(a), O gag a} is
compact, in fact a closed line interval, ; is well defined. By the equivalence between
(20) and (24), ; can also be defined as the least nonnegative multiplier associated with
the oconstraint qu £ 0 in the quadratic program (20). Hence (26) and (27) can be
sharpened by replacing a by &. Related but different results for perturbations of
linear proqrams are given in [17].

Going back to the unconstrained minimization problem (5), it is straightforward to
show that its objective function £(r,a) has a Lipschitz continuwous gradient if we make
use of the following property of monotonic norms due to Y.-C. Cheng [1].
lLemma 2 (Cheng). For any monotonic norm #<f on Rl and any a and b in Rz it
follows that

Ma+ - b+l < la - bl .
This lemma is a direct consequence of the inequality
la, = b1 - l(ai)+ = (b 120, i=1,...,4
and the norm monotonicity. The Lipschitz continuity of Vf(r,a) can be easily established

by using Lemma 2 and the dual vector norm [0I+i' associated with any given vector norm

i} on Rl and defined by Ixl' = sup xTy for x in R2 and from which follows the

yERE
Tyl=1

generalized Cauchy inequality xTy < Ixlelyl' for all x and y in Rz. For

@>p,q2 1 and (¥/p) + (1/q) = 1 and any x in Rz, the p-norm

2
IxIp = z |xi|p)1/p and the g-norm llxlq are monotonic and dual norms to each other
i=1

[7,19] . By using the generalized Cauchy inequality and Lemma 2 it is a straightforward

algebraic exercise to obtain the following.

Rk+1

Lemma 3. Let [l¢l be any monotonic norm on and let {U+#' be its dual norm. Then

1we(r' o) - ve?adn g uiet oy - et

for all (r1,a1) and (rz,az) in Rk+1 where

-10-
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1
L)
Lo=1+ 1% 4 IMI(Igl + Iq1') + Iqlelgl® . (29) '
For the 2-nomm I+,
; . 2
; L=L,= 1+ (n, +1q1,)° . (30) |
« !
: b
i
i
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3. The least-norm linear programming solution as the minimization of a nonnegatively

constrained quadratic function

An entirely analogous development to that of Section 2 but which is based on (8)
rather than (7) leads to the following results the proofs of which are omitted.
Theorem 2. The dual linear programs (1) and (2) are solvable if and only if the quadratic

program (9) is solvable. For any solution (s,£,8) of (10) the point (z,w) defined by

x -
-z==M1:-Bq+t,w:=Mz+q (31)

is the unique point in RZX  which solves (3), the dual linear programs (1)=(2) and the

minimum-norm problem (8). Furthermore

min g(s,t,8) = - min {-1— llzlzlw =Mz +q, 220, qu = 0} . (32)
2k+1 x 2 ¢ =
(s,t,B)€R (z,w)€R
(sltls)go

Corollary 4. Let {z|Mz + q > 0, 2 > 0} be nonempty and let g be defined by (10).

There exists a § 20 such that

-~

min gls,t,B) = ¥(B) for B > 8 (33)
(sltrB)ER2k+1
(S,t;B);0
where
Y(g) := min g{s,t,B)
(s,t)SRZk
(s,t)go

is well defined, continuous and convex for all real B and

1 2
$(0) = = min {'2- ﬂzllez +q20,z>0},

zZER

Y(B) = ~ min (%lzlilm+q;0,z=0,qu=0} for B 2B .

ZGRk

-12=
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Corollary 5. Let the linear program (1) be solvable. For § 20 let 2z(8) be the unique
solution of the following perturbation of the minimum norm problem (8)
min {51 lzlngz +q20, 230, qu < 6 .

zZeR

Then for any B such that (s,t,8) solves (9)

2 2 -
0 < lz“))l2 - lz(5)l2 < 286
and if ql 0
BS
0 < ¥1z(0)), - Hz(§)b, ¢ ——mrnr ,
2 2 |z(0)|2

A A a

The least value E such that (s,t,8) is a solution of (9) may also be considered a
stability parameter for the linear program (1) and may be defined as min{8|y(8) = v(8),
0 ﬁ ] < E) where 5 is defined in (33). Alternatively 8 may be taken as the least
nonnegative multiplier assoclated with the constraint qu § 0 in the gquadratic program

(8).
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4. Computational implications

The reformulation of the linear program (1) as an unconstrained minimization problem
(5) or as a quadratic program (9) is not merely of theoretical interest but may also have
computational potential., For example, the simple gradient algorithm [8,16]
(e = ety - yveietaly, 1= 0,0,...

where (34)

2

0 <Y < 2/L2 and L2 1+ (IMI2 + Iqlz)
. i i . . Rk+1

will generate a sequence {(r ,a )}, i = 0,1,00e, in starting from any point
(ro,ao) in RK'1 which will converge to a solution (;,;) of (5) [16] if the linear

program (1) has a solution. The convergence however may be slow and the error is bounded

by (16]

et ¢ ! (35)

i i I Y(2 - YLZ)
where € := f(r ,c¢") - f(r,a) and yu = . It would be very
o 0 -2
20(r ,a’) = (r,a)l
interesting to develop faster and possibly finite methods fOr solving (5).

Similarly problem (9) may be solved by the successive overrelaxation (SOR) or other

iterative methods of [11]. However, one would be working in the space R+ o g2(mrn)n

which is of higher dimension than that of the space R™™  of (1). oOther SOR methods for

solving linear programs have been developed elsewhere [12] which do not enlarge the space

of the original problem, however they contain an unknown but finite perturbation or penalty

parameter. The formulation (9) gets rid of the parameter at the expense of enlarging the

space of the problem. Another possible method for solving (9) is the conjugate gradient

method [15,14].
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